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The irreducible string and an infinity of additional 
constants of motion in a deposition-evaporation model on 
a line 

M K Hari Menont and Deepak D h d  
Tata InititUte of Fundamental Research, Homi Bhabha Road, Bombay-400005. India 

Received 15 May 1995 

Abstract We study a model of stochastic deposition-evaporation with recombination, of three 
species of dimers on a line. This model is B generalization of the model recently intmduced 
by Barma ef al  to q 2 3 states per site. It has an infinite number of wnstants of .motion, in 
addition to the infinity of conservation laws of the original model which are encoded BS the 
consewation of the irreducible slring. We determine the number of dynamically diswnnected 
sectors and their sizes in this model exactly. Using the additional symmetry we consmct a 
class of exact eigenvectors of the stochastic matrix. The autocorrelation funtion decays with 
different powers of t in different secton. We find thak the sparial correlation function has an 
algebraic decay with exponent 3 4  in the sector corresponding to the initial state In which all 
sites are in the same slate. The dynamical exponent is non-trivial in this sector, and we estimate 
it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in 
this case z = 2.39 ?c 0.05. 

1. Introduction 

Recently a very interesting stochastic model with deposition and evaporation processes has 
been introduced by Barma er a1 [1,2]. In this model one deposits atoms onto*k adjacent 
vacant sites of a &dimensional l a t h  and evaporates atoms from any k adjacent occupied 
sites, with specific rates for deposition and evaporation. The cases k = 1 and k = 2 are 
exactly solvable, the former being trivial, and the latter being equivalent to the ferromagnetic 
Heisenberg spin-f chain.   for k ,> 3, on a linear chain of length L, the phase space of 
this k-mer model consisting of the 2L possible configurations is' found to break up into 
an exponentially large number of dynamically disconnected sectors [1,2]. This may be 
understood as being due to the existence of an infinite number of independent conserved 
quantities in this model [3]. These conservation laws also give rise to a wide range of 
relaxation behaviour [4]. For example the density-density autocorrelation function shows 
different power law decays in different sectors (fr1l4,  t - I l 2 ,  t-0,59) and even~a stretched 
exponential decay in some sectors. 

For k > 3, though there exist an infinite number of constants of motion, these still 
have not enabled us to get a full solution of the model so far. In.this case the number of 
sectors and their sizes in the steady state has been calculated exactly, but the dynamics are 
understood only qualitatively. The quantum Hamiltonian corresponding to the stochastic 
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matrix has k-body interaction terms which makes the problem difficult to tacue analytically. 
Thus it is worthwhile studying models which show the same qualitative features and are at 
the same time more tractable analytically. 

With this motivation we define a variant of the k-mer deposition-evaporation model with 
q states per site. This model for q = 2 corresponds to the dimer deposition evaporation 
model studied by Barma et al. For q > 3 this model shares many qualitative features 
with the trimer model, like the existence of an infinity of conservation laws encoded as 
the conservation law of the ‘irreducible string’ [31, and different power law decay of the 
autocorrelation function in different sectors. However, our model has the two advantages: 
it has only two-body interaction and it has an additional discrete symmetry group of very 
large order. These properties make this model more tractable analytically than the k-mer 
model. In fact, one can get many exact eigenvectors of the stochastic matrix in our model 
very easily. However, we have not succeeded so far in solving this model completely. For 
simplicity we study only q = 3 case in this paper, for higher q results will be qualitatively 
the same. 

This paper is organized as follows. In section 2 we define OUT model and write the 
stochastic evolution operator in the form of the Hamiltonian of a quantum many-body system 
of three species of particles. In section 3 we show that the vector space consisting of 3L 
configurations breaks up into an exponentially large number of dynamically disconnected 
sectors, and also calculate their sizes. In section 4 we describe the additional symmetries 
of this model and study the resulting fyther decomposition of the phase space formed by 
all the configurations belonging to a sector into subspaces. We construct a class of exact 
eigenvectors in the next section. In section 6 we study the decay of autocorrelation function 
in various sectors. As in the case of trimer model [4], we find sector-dependent decay. 
The spatial correlation function in the steady state for the sector corresponding to an initial 
condition of all sites in the same state is calculated in section 7. It has power law decay 
with exponent 3/2. A numerical diagonalization study of the stochastic matrix to find the 
dynamical exponent in this sector is presented in section 8. 

2. Definition of the model 

Our model is defined as follows. At each site of a one-dimensional lattice, there is a spin 
variable qi which can be in any of the three states a,  b or c. These spin variables undergo 
a stochastic time evolution given by the following rule: any pair of adjacent spins, which 
are in the same state, can flip together to any of the other two stam with some specified 
rates for the transitions. For example an aa pair can flip to become either a bb pair or a 
cc pair. This process can be thought of as the evaporation of an a a  dimer and immediate 
deposition of a bb or cc dimer at that place. We shall call this model the dimer deposition- 
evaporation model (DDE model). This is a special case of the general reaction-diffusion 
process (a + b + c + d )  recently studied by Dahmen [5]. We consider only the case of 
equal rates for all the transitions in this paper. 

Any configuration C on the lattice can be represented by the basis vector 1q1,q2,. . . , q‘), 
in a vector space of dimension 3‘. If P(C, t )  denotes the probability of the configuration 
C at time t ,  then the master equation describing the evolution of these probabilities can be 
written as 

(1) 
a 

--IP(O) = ”)) at 

where IP(t))  = Cc P(C, t ) lC)  and ~ is the stochastic matrix. 
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We can write W in the form of a quantum Hamiltonian as follows. Consider a quantum 
mechanical system of three species of particles on a one-dimensional lattice of length L 
with periodic boundary condition. Each species is characterized by a colour q which can 
be either a,  b or c. Particles of the same colour experience a hard core interaction so that 
not more than one particle of the same colour can occupy a given site. Therefore every site 
can be either empty or occupied by up to three particles of different colours. Thus there 
are eight possible states on every site. Let and $ denote the Pauli operators which 
annihilate and create a particle of colour q at the site i .  Now consider the Hamiltonian 

where the operator Ai,i+l acting on any state results a non-null vector only when qi = 
qi+l = U and is given by 

(3) &i+lI ..., a , a  ,... ) = I  ..., b , b  ,... ) + I  ..., c.c ,... )-21 ..., o,a ,... ). 

The operators &+I and &+I have similar actions. The operator, 

iii = cipi -+&hi f ;;ti 

[ i i ,  fi] = 0 (5) 

(4) 

counts the number of particles at site i .  Clearly 

and the number of particles is conserved at each site. If we restrict ourselves to the subspace 
of the full Hilbert space in which there is only one particle at every site, i.e. i; = 1 for all 
i ,  corresponding to every configuration 1q1.q2, , . . , 9 ~ )  in this subspace there is a unique 
configuration specified by the same L-string as in the dimer problem. The action of fi on 
)[qi]) is the same as that of W. Thus 6' is represented by the quantum Hamiltonian given 
by (2)  acting on the.subspace with ii; = 1 for all i .  

Make the particle-hole transformation (& --f G,?) on all odd numbered sites for all q. 
We define the current operator by 

(6) 
- *  

&+I = U ,  A +  ai+] * +b?bi+, +tT&+l. 

fi = C[&.2i+l j&+I + ~zi .2i-1 + 3 Cni.ani+I.u.  (7) 

Then the Hamiltonian up to the addition of a constant can be written as 
. -  

i i.o 

The dimer model now corresponds to fi operating on a sector where hi = 1 for all even 
numbered sites and lii = 2 for all odd numbered sites. The corresponding stochastic process 
is one in which there is a constant rate of exchange of any two particles at nearest neighbour 
sites. 
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3. The sector decomposition of the vector space 

As in the original trimer model, this model has an infinite number of independent constants 
of motion. These are described most simply in terms of the 'irreducible string' (IS) [3]. We 
consider free boundary conditions for convenience. Each configuration can be represented 
as a string of L characters, each character being one of a, b and c. From the string 
corresponding to a given configuiation C, delete all adjacent pairs of aa, bb and cc. Each 
such deletion decreases the length of the string by 2. Repeat this operation on the resulting 
string until no more deletions are possible. This defines the IS corresponding to C. 

It is straightforward to extend the arguments in [3] to our model. and show that the 
IS is a constant of motion. In addition, any two configurations having the same IS can be 
reached from each other. Thus the 1s can be used to label the different sectors into which 
the vector space breaks up. 

Consider the set of all configurations in which no adjacent pair of sites are in the same 
state. These configurations will not evolve under the given dynamics and are said to be 
fully jammed. For these configurations the len& 1 of the irreducible string equals L. The 
total number of such configurations is easily seen to be equal to 3 x ?,'-I. Now consider 
sectors which are not totally jammed ( I  c L). The number of sectors labelled by irreducible 
smngs of length I will be the number of distinct irreducible strings of length I which is 
3 x Zf-I. The total number of sectors can easily be seen to be ZL" - 1. 

Now we proceed to calculate the sizes of these sectors, i.e. the number of distinct 
configurations which belong to a particular sector. The size of a fully jammed sector is 
clearly 1. This is because a totally jammed configuration cannot evolve and hence is the 
only member of that sector. Let D ( I S ,  L) be the size of the sector labelled by irreducible 
string I S  on a lattice of length L. We define the generating function 

M K Hari Menon and D~ Dhar 

where the summation over L extends from 1, the length of IS to infinity. Of special interest 
is the sector corresponding to the Is of length zero. This we will call the null sector and 
denote its irreducible string by 4. To compute G(@, z ) ,  we introduce a formal series which 
is a sum of all strings of arbitrary length, which are made up of three letters a, b and c, 
and reducible to 4: 

8(4) = $ +aa + bb f cci-aaaa i- bbbb i- cccci-abba f . . . . (9) 
A string S is said to be decomposuble, if the irreducible string I S ( S )  = 4 and it can 
be written as SI . S, such that I S ( & )  ~= IS(&) = 4. If a/(+) denote the sum of all 
indecomposable strings which are reducible to $ then a(@) satisfies the equation 

Further if 5: denotes the the sum of all indecomposable strings which are reducible to @ 
and starting with the letter q then 

(11) G I ( @ )  = G; + E $  + E ;  ' ' 

6: is given by 
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To get the generating function we replace all occurrences of a, 6,  c by z in equation (12). 
Then 8;, 8: and 8; all reduce to the same power series in z ,  call it g(z), given by 

“2 

This equation determines g(z) as an explicit function of z given by 

g(z)  = (1 - -)/4. 

Using equations (10) and (ll), we get 

The growth of D(@, L) for large L is determined by the singularities of g ( z )  nearest to the 
origin. This happens at zE = %l/&, and since g has a square root singularity near zc, it 
is easily verified that 

D ( @ ,  L) - 8L12L-3/2 (16) 

for large L. 
One can easily generalize this procedure to find the size of the sector when the irreducible 

sbing is of finite length 1. Let IS = L Y ~ L Y ~ .  . . , a[, where LYI = a ,  b or c .  Then d( lS)  (defined 
similarly as e(@)) is given by 

I 1 1 
eels) = f f l  f f 2 . . .  ff&m 

1 - A f f f , )  1 - A@,) 1 - A ( q )  

where g(z) is given by equation (14) and l is the length of the irreducible string IS. Then 
the size o f  the sector characterized by the irreducible.string IS is the coefficient of  zL in 
( I @ ,  and hence 

where integration is over a small circle encircling the origin. From this it is straightforward 
to find the asymptotic behaviour of D ( I S .  L )  by doing the integral using the saddle-point 
approximation. Let A = Iimr+m IIL. Then 

D ( I S ,  L) - [k(h)lL (20) 

where 

(21) k ( ~ )  = (1 - A)-O-NI~(~ + ~ ) - 0 + w p ~ . ) / 2 ,  

Thus, in general the size of a sector increases exponentially with L and the growth constant 
depends on the density of the irreducible string. From this one can recover the results for 
the null and totally.jammed sectors by. noting that k(0)  = & and k ( 1 )  = 1. 
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4. Additional symmetries 

In the previous section we discussed the decomposition of the 3L-dimensional configuration 
space of the model into 2L+' - 1 mutually disjoined sectors. This sector decomposition 
described in terms of the irreducible string IS is maximal in the sense that it is possible to 
go from any configuration to any other configuration in the same sector. However, this only 
helps us to block diagonalize k. In order to do better, we have to find additional operators 
that commute with W. These operators are not completely diagonal in the configuration 
basis. We now describe how to construct such operators using the additional symmetries of 
our model. These symmetries are not present in the original k-mer model. They are also 
not present in our model if all the transition rates are not equal. Using these symmetries we 
are able to reduce the task of diagonalizing the stochastic matrix within a sector, by further 
block diagonalizing it. 

The deposition-evaporation model can be recast in the form of a generalized interface 
growth model, similar to the KPZ model, where the variable at each site is a 2 x 2 matrix 
@stead of a scalart. This is seen as follows. We consider three non-commuting matrices 
A(a), A(b) and A(c) such that A2(a) = A'@) = Az(c) = I,, the identity matrix. A simple 
choice which satisfies these conditions are the unimodular matrices 

Alternately, we could choose them to be SU(2)  unitary matrices. For a configuration 
IC) = \q, ,qZ, . . . , qL), we associate a 2 x 2 matrix I,(C) to every site i given by 

I;(C) = A h ; ) .  . . A(qz)A(qi). (2.3) 

It is easy to see that the stochastic evolution of the dimer model can be cast in terms of 
matrices 1 's  by the following local evolution rule: if Ii-j = I;+1, then I; is reset randomly 
to any one of the three values A(q)li-l at a constant rate say 1. The conservation law of 
the I S  in this representation becomes the simple statement that I L  is unchanged. 

A configuration of dimers is then equivalently characterized by specifying the matrix 
variables l i  at each site i .  This matrix formulation clearly brings out the existence of a 
discrete group of infinite order in  the model. I f  we work with free boundary conditions the 
set of allowed values of the of the matrices 1 ' s  can be put in one-to-one correspondence 
with the sites of a three-coordinated Bethe lattice. Identify one site of the Bethe lattice as 
the origin and associate the identity matrix to this site. We colour the bonds of this Bethe 
lattice by three colours a, b, c such that any three bonds meeting at a site are all of different 
colours. The matrix I ,  corresponding to a site 01 of the Bethe lattice is given by the ordered 
product of A(q)s (q = a, b, c) along the unique path from the origin to CY. A sequence 
(q;), i = 1 to L, specifies a configuration of the DDE model, and also a unique L-step path 
on the Bethe lattice which starts at the origin. As an example, the path corresponding to 
the configuration accacc is shown in figure 1. Configurations in the null sector correspond 
to paths that return to the origin. Any pair of adjacent spins that are in the same state in 
the dimer configuration will corresponds to an immediate retraversal of a step on the Bethe 
lattice. The stochastic evolution in the DDE model leads to a stochastic evolution of this L- 
step polymer chain on the Bethe lattice. An elementary movement of this polymer chain 
dynamics is illustrated in figure 1, where the transition from the configuration acccacc to 
abbacc is shown. 

t Matrix genenliwlions of the KPL mdel,  different from this, have recenlly been discussed in 112,131. 
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Figure 1. Dimer deposition-evaporation,dynamics as a dynamics of polymer chain on the Bethe 
lattice. The transition between the states Inccacc) and labbnce) is shown. 

The operation of interchange of one branch of the Bethe lattice with another is a 
symmehy of 6' since this only corresponds to a recolouring of the bonds. This is illustrated 
in figure 2, where we have considered only one branch starting from the origin. At every 
site CY on the Bethe lattice define an operator pa wh$h interchanges the two subtrees starting 
from that site and going away from the origin. P. changes a configuration C (Zi) to 
C' = [Zi] where I; -+ f(Zi),  where f is a matrix valued function of its argument. 

Figure 2. The opemtion of interchange of two branches lha: stat from lhe site 3. This is 
equivalent to reeaiouring of lhe bands. and is a symmetry of W. 

Clearly [6', Fe] = 0. We say that site ,fl is a descendent of site a if the unique path 
connecting ,6 to the origin goes through a. From the figure it can be seen that [pa, pp] = 0 if 
neither (Y nor p is a descendent of the other. If ,fl is a descendent of a then pupp = Fy[=, 
where is the operator at site y which is obtained from site ,fl by the action of Pa. 
In figure 2 for example, [&, 41 = 0. But [PI, 4 1  # 0 since 2 is a descendent of 1. 
Instead they satisfy the relation p , &  = p$,. This symmetry comes from the geometrical 
symmetry of the underlying Bethe lattice. This in turn is related to the internal colour 
symmetry in the model, and we will call it recolouring symmetry C. 

In addition to these one has a permutation symmetry of order 3 (S3) about the origin 
which corresponds to interchanging the three colour labels globally. The set of operators 
(pa]  together with the operators corresponding to S3 will constitute an infinite set of 
conserved quantities, which are, however, not all commuting with each other. 

One interesting consequence of the recolouring symmetry is that the spectrum of k in a 
sector depends only on the length 1 of the irreducible string and not on its details. This can 
be seen as follows. For a general sector, the endpoints of all the paths on the Bethe lattice 
will be fixed. The shortest path connecting these two points corresponds to the irreducible 
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string. All pms such that site e does not belong to this path leave the irreducible string and 
hence the sector it labels invariant. On the other hand, one can go from one irreducible 
string to any another one having the same length by a series of branch flip operations 
using the pe operators which are on the shortest path. Since each of these operations are 
symmetry operations of k, i.e. [Fe, @] = 0 for all a, the spectrum will be identical for all 
these sectors. This property is not present in the original k-mer model. 

We can make use of these symmetries for further block diagonalization of @ with in a 
sector. This is achieved by breaking the state space spanned by all the configurations in a 
particular sector into subspaces. We illustrate this with a few examples. 

For convenience we will consider the case of null sector. First consider a lattice of 
length 2. There are only three configurations in this sector which are laa), Ibb) and Icc). 
In this case we can get all the eigenstates of the Hamiltonian using S,. Consider the states 

M K Hari Menon and D Dhar 

where w is the cube root of unity. These are the eigenstates of the operator corresponding 
to cyclic permutation of a, b and c (P&) with eiKenvdues 1, w and w2 respectively. Since 
[$&, k] = 0 these are also the eigenstates of W. The eigenvalues of !& corresponding 
to these eigenvectors are 0, -3, -3. Thus in this case we were able to diagonalize k 
completely. But this is a rather trivial example. 

Figure 3. Construction of exact eigenvectors using rccolouring symmetry. For L = 4, three 
exact eigenveclors c m  be ConsLrucLed by antisymmevizing about the sites I ,  2 and 3. 

Next we consider the case of L = 4. There are 15 states in this sector. First we consider 
the symmetry operations about the sites 1, 2 and 3 as shown in figure 3. Consider the states 

These are the non-desenerate eigenstates with eigenvalue -1 of p,, $2 and $3 

respectively. It can be verified very easily that these are also eigenstates of k?. This 
gives us a decomposition of the 15-dimensional vector space into subspaces of dimensions 
1, 1, 1 and 12. Using the cyclic permutation symmetry at the origin, we can get a further 
decomposition of the 12-dimensional subspace. For this consider the eigenstates of j a b c  

]$I) = - q u a a n )  + Ibbbb) f Icccc)) 
+ Ibbcc) + I C C U U ) )  1h) = j j ( laabb)  T 
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143) = -$lbbaa) + Iccbb) + [aacc)) 
144) = $(labba) + lacca) + Ibccb) + Ibaab) + Icaac) + Icbbc)) 

1x1) = L(laaaa) + wlbbbb) + o’lcccc)) 
1x2) = -(laabb) +olbbcc) + o’lccaa)) 

1x4) = %((labba) + lacca)) + w(lbccb) + Ibaab)) + o’(lcaac) + Icbbc))) 

151) = &(laaaa) + w’lbbbb) + olcccc)) 
I$’) = -&(loabb) + w’lbbcc) + olccaa)) 
163) = &(lbbaa) + w’lccbb) + olaacc)) 

I&+) = -$(labba) + lacca)) +w2(lbccb) + Ibaab)) So ( l canc )  + Icbbc))). (26) 

Since pubc commutes with 9. {[$y)), {/xi)) and {I&))  form three invariant subspaces under 
the action of 8. Thus we have got the following decomposition of the 15-dimensional vector 
space spanned by all the configurations in the null sector in to subspaces of dimensions 

c 
1x3) = j j ( lbbaa)  c fwlccbb)  +w’[aacc)) 

1+1+ 1 + 4 + 4 + 4 =  15. (27) 

We have carried out the same procedure for the case of L = 6. In this case the size of 
the null sector is 87. Using the Fa operators, this can be broken into 18 subspaces out of 
which 12 are of size 1, 3 are of size 7 and another 3 are of size 18. 

I l 

Figure 4. The aulo~o~~elation function Ct,( t )  for the sec101 abnb.. . (0).  The broken curve is 
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form of the decomposition of the vector space for the case L = 6 is 

M K Hari Menon and D Dhar 

87= 12 x 1 + 3  x 3 + 3  x 4 + 3  x 6+3 x 12 (28) 
where m x n means m subspaces of size n. 

In principle this procedure can be carried out for a lattice of any length. For a linear 
chain of length L,  sites up to distance L/2 from the origin on the Bethe lattice are reachable. 
The number of sites that are one step away from the boundary and inside will be 3 x 2(L4)/2 
(L > 4). As we have seen for L = 4, the antisymmetric eigenstates of the p operators on 
each of these sites will be an eigenstate of @. Thus one can easily get a large number of 
eigenstates in this model. By constructing the antisymmetric eigenstates of the p operators 
on sites which are interior to this, one can get invariant subspaces as we have seen in the case 
of L = 6 (the three sectors of size 7). So far we have not been able to get a general result 
for the total number of subspaces and their sizes within a sector as a result of this symmetry. 
But one can use this symmetry for the numerical diagonalization of the stochastic matrix 
for small sizes, where one can restrict oneself to one subspace (say the symmetric subspace 
where all the eigenvalues of the operators are 1). This we have done to estimate the 
dynamical exponent in the null sector, where we have seen that these additional symmetries 
lead to substantial decrease in the size of the matrices to be diagonalized. These results are 
discussed in section 8. 

5. Construction of some m c t  eigenvectors of the stochastic matrix 

In the previous section we have constructed some of the eigenvectors of the stochastic matrix 
in the null sector using the recolouring symmetry of the dynamics of L-step chain on the 
Bethe lattice. In this section we show that the same procedure can be used to construct 
eigenvectors in sectors which ace almost totally jammed, i.e. the length of the irreducible 
string 1 = L - 2n, where n is a small integer. 

As we explained in the earlier section, the spectrum of @ is the same for all the sectors 
whose irreducible strings are of same length. So we need to consider only one representative 
sector which we choose to be the one in which the irreducible string is abab., .. Consider 
the case when 1 = L - 2. We use periodic boundary condition for convenience. There are 
two types of configurations in this sector. In the first type there will be three adjacent sites, 
say i, i + 1 and i +2 which are of the same colour (either ana or bbb e.g. I.. . abbbab. . .)). 
Let these states be denoted by I#(i)). In the second type there will be two adjacent sites, say 
i + 1 and i + 2 which are having colour c. (e.g. I. . . abccab . , .) .) Let this type of states be 
denoted by [ ~ ( i ) ) .  In both these types site i + 1 and site i +2 have the same colour and thus 
constitute a reducible part. It can be very easily seen that under the deposition-evaporation 
dynamics, the position of the reducible part makes a nearest-neighbour random walk. Hence 
the dynamics in this sector is equivalent to a random walk problem with two states per site 
( l # ( i ) )  and Ixci))). The eigenfunctions l+k) and eigenvalues h~ of the stochastic matrix 
can be found by solving this random walk problem. 

Let &(i) and xk(i) be defined by qjk(i) = (@(i)lh) and n( i )  = (x(i)l@k). They 
satisfy the following eigenvalue equations 

ht&di) = Mi - 1) +Mi + 1) + x d i  - 1) + xdi)  -+Mi) 
&xk(i) = G d i )  + 4di +' 1) - 2xdi). 

Ik = (3 - cos(k)) k d G 2 5  

(2% 

The solution for these eigenvalue equations are given by 

(30) 
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where k = ZxmjL, m = 0.1, .  . . , L - 1. 
In the case of free boundw conditions some of the localized eigenvectors can 

 he constructed directly with out solving this random walk problem. Consider the 
situation where the reducible part is near one of the boundaries, i.e. the states 
lab.. . abaa), lab.. . abbb) and lab.. . abcc). It is easy to see that the state obtgined by 
antisymmetrizing, I@) = lab.. .abaa) - [ab.. .abcc), is an eigenstate with eigenvalue -1. 
One more eigenstate can be constructed by antisymmetrizing about the other end, 

Now consider the case of 1 = L - 4. In this case the reducible part is of length 4. A 
typical configuration in this sector will he I.. .abororab .. .ab@'ab.. .). The reducible.parts 
oror and @ perform random walk under the dynamics. When these random walkers come 
closer to each other they can form a state like I.. . abaaorcuab . . .) or an intermediate state 
like I.. . abc.@cab.. .). There are two such intermediate states which corresponds to the 
two values 0 = a ,  b. The two random walkers can go into such intermediate states and 
remain there for a while by making a transition between them. This can be considered as a 
short-range attractive interaction between the two walkers. So the dynamics in this sector 
is equivalent to a problem of two random walkers on a line having a short range attractive 
interaction. 

We can use the same procedure OF antisymmebization to get some mote of the 
eigenvectors. One type of eigenvector is obtained by antisymmetrizing about both ends 
simultaneously: 

I@,) = [Ibbab.. .abaa) - lbbab.. .abcc)l - [Iccab.. .abaa) - Jccab.. .abcc)l. (32) 
The second type of eigenvector is obtained by antisymmetrizing two intermediate states 

I.. .abcaacab.. .) and I.. .abcbbcab.. .): 

(33) I@z) = I.. . abcaacab.. .) - 1.. .abcbbcab.. .). 

Since there are L positions on the string, where abcpflcab can occur, for the case of periodic 
boundary conditions, there are. L such eigenvectors. 

This can easily be generalized for the case where there are 2n random walkers (2n < L). 
A typical intermediate state formed by pair wise union of random walkers will have n 
number of substrings of the form . . . abcaorcab . . .. The eigenvector is constructed by 
antisymmetrization of all these. The corresponding eigenvalue will be -3% Since these n 
substrings can he arranged in roughly LCn ways, we can get so many eigenvectors. As an 
example, in the case of n = 2 one such eigenvector is given by 

I @ )  = I.. .abcaacab.. .abcaacab.. .) - I.. .abcbbcab.. .abcaacab.. .) 
+I. .  .abcbbcab.. .abcbbcab . . .) - I.. .abcaacab.. .abcbbcab.. .). (34) 

6. Autocorrelation functions 

For the trimer model, the existence of the infinite number of conservation laws leads to non: 
exponential relaxation in equilibrium [4]. It is found that the density-density autocorrelation 
function decay as a power law for large times and the exponent is different in different 
sectors. In most sectors the decay is t-'I4 but is of the form t-'I2 in most of the sectors 
with periodic irreducible strings. In some special sectors with periodic irreducible shing, 
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sbetched exponential behaviour (exp(-z/i)) is found. In the null sector the autocorrelation 
function is found to decay as r3B, where z % 2.5. This diversity of relaxational behaviour 
has been explained in terms of the hard corerandom walkers with conserved spins (HCRWCS) 
model [4,6]. It has been argued on qualitative grounds that these two models are in the 
same universality class. However, a strict proof of this proposition is not yet available. 

An important assumption of the HCRWCS model is that the spin carried by each walker 
is conserved, but does not affect the diffusive motion of the walkers in any way. This 
is not strictly true in the trimer model. However, for our model, this property can be 
exactly established as a consequence of the recolouring symmetry. Thus the argument 
which predicts the different behaviour of spin-spin autocorrelation function in different 
sectors is much cleaner for this model than for the trimer model studied earlier. We proceed 
to give the arguments which are an adaptation of the arguments for the trimer deposition 
evaporation model [4,6], in some detail. The time-dependent spin-spin autocorrelation 
function in the steady state is defined by 
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C$(t) = Prob(q&) = p ,  qi(0) = a) - F’rob(qi(f) = p)Prob(qi(0) = IY) (35) 
where hob@) denote the probability of event x and qi(t) is the state of the spin at the 
ith site at time f. Each of a and ,9 is either a, b or c. Since a and p each takes three 
values, one can define nine autocorrelation functions in this model. Among these; by time 
reversal symmetry CL,,(t) = Ci ,u( f )  and also E, C$t) = 0. Thus there are only three 
independent correlation functions. 

As in the trimer model these autocorrelation functions show sector-dependent decay 
[4]. Let us consider the following five different representative sectors characterized by the 
ineducible strings: (i) ababab.. ., (ii) acbcacbc . . ., (iii) abcabc . . ., (iv) random string, 
and (v) 6 (null sector), where . . . denotes repetition. The length of the irreducible string in 
the first four cases is taken to be L/2. 

We will first present a qualitative theory for the decay of autocorrelation functions and 
then compare its predictions with our Monte Carlo data. The behaviour of the autoconelation 
function can be understood in terms of the random walk of the characters which constitute 
the irreducible string. Consider a sector labelled by an irreducible string a,, IYZ . . . , at, with 
the length of the irreducible string 1 a finite fraction of the total length L. Let X I ,  x z . .  . , xt 
be the positions of the characters in a given configuration C which do not get deleted under 
the deletion algorithm of section 3. Then q,(t) = a; (i = 1 to 1 )  at all times. We can 
think of X I ,  x 2 . .  . , xi as the positions of 1 interacting random walkers with the nth random 
walker from the left canying a colour a, = qx. with it. The positions of random walkers, 
[ x i ]  will change in time as C changes. The walkers move either to the left or right but 
always remain on the same sublattice. Further, they do not cross each other. 

We have argued in section 4 that the spectrum of the stochastic matrix in this model is 
completely independent of the detail of the irreducible string string sequence (a;) and only 
depend upon the length of the sequence. However, the autocorrelation involves a weighted 
sum of correlations of (ai), which gives rise to different relaxational behaviour in different 
sectors. 

The important contribution to the autocorrelation function comes from times when the 
site i is occupied by a character from the irreducible string. We shall assume without proof 
that the contribution coming fiom times when the site i is occupied by a reducible character 
is qualitatively similar. 

Since the hard core random walkers will remain on the same sublattice they were 
initially, we can perform a sublattice average of C&. Let r denotes the sublattice which 
is either A (odd sites) or B (even sites). In the HCRWCS approximation we can write the 
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expression for the autocorrelation function as 
+m 

C&(t) P ( k ,  t ) M r ( k )  
k=-m 

where P(k,  t )  gives the joint probability of finding two particles at a given site, one at time 
0 and the other at time t such that the difference between their labels is 2k.  M r ( k )  is a 
measure of the correlation of the colours in the irreducible string, and is given by 

M r W  = ~ m m , w q x m + , ,  B )  (37) 
m 

where the summation is over all the labels of the particles which belong to the sublattice 
r. The probability P ( k ,  t )  can be obtained using the results of random walks of hard core 
particles [7-91. 

Note that P(k ,  f )  depends only on the total length of the irreducible slring and not on 
its details. While Mr(k) depends only on the irreducible string and is independent of time. 
This separation of the sector dependence and time dependence is the crucial feature which 
allows calculation of CL,@ in different cases. This separation is exact due fo the recolouring 
symmetry in our model, but only approximate in zhe original trimer modeL 

Equation (36) can be used to find the behaviour of autocorrelation function. For example 
consider the sector labelled by the irreducible string abab . .  .. On the A sublattice qx, = a  
for all m and hence 

+m 

C,",Cf) = P(k,  t ) .  (38) 
k-m 

This is the density-density correlation function of hard core particles which decays as t-l12 
for large t [7]. Our simulation gives the same power law decay which is shown in figure 4. 
From the symmetry between b and c on this sublattice and the constraint & C[B(t) = 0, 
it can be easily seen that C&(t) - t-'Iz for all values of (Y and B. The behaviour of the 
correlation functions on both the sublattices is the same which follows from the symmetry 
of the irreducible string. 

In the case of the sector labelled by fie irreducible s.tring acbc . .  ., M A @ )  is of  the 
form c1 + c ~ ( - l ) ~ ,  where CI and cz are constants independent of k.  Thus C,",(t) has two 
parts. The first part decays like t-'12 as explained earlier. The second part is the Fourier 
transform of P ( k ,  t )  which goes as exp (-A) for large t .  The stretched exponential decay 
dominates the short term  behaviour^ but asymptotically the behaviour will cross over to 
t-'12. By symmetry, C,A(t) should have the same decay. On the B sublattice qxm is c for 
all m, so the decay will be purely diffusive (t-'12) as explained earlier. These behaviours 
can be seen in figure 5. 

For the sector abcabc ..., the decay of C,A,(t) is shown in figure 6. The leading 
behaviour of the correlation function can be shown to be stretched exponential decay by 
a similar argument as in the previous case. By symmetry of the irreducible string the 
behaviour should be the same for all the correlation functions and on both the sublattices. 
This has been confirmed in our simulation. 

When the irreducible slring is random, Mr,(k) is significant only for small values of k .  
For small k ,  P (k .  t )  - t-'14 for large t [4]. Therefore the autocorrelation has a t"14 decay 
which can be seen in figure 7.~ 

Figure 7 also shows the decay of CA@) in the null sector. It is a power law decay with 
the value of the exponent 0.59. The same power law decay is founp for other values of (Y 

and p and on both sublattices, which follows from symmetry. B a "  et al have obtained the 
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Figure 5. The autoconelalion functions Ct&) (0) and C&(r) (+) for the sector acbc . . _ _  For 
small I, Cfn(t) has a stretched expowritid decay of the farm exp(-t-'P) but at later times it 
cmsses over to pure diffusive decay. On the other hand C:a(r) has pure diffusive decay at all 
times. 

same estimate for this exponent for the trimer model in the null sector [4]. This is evidence 
that the dynamics in these two models for the case of the initial condition in which all 
sites are in the same state belongs to the same universality class. We can understand the 
behaviour of the correlation functions in sectors where the irreducible string has a finite 
density using the HCRWCS model, this approach is no longer useful when studying the null 
sector. An analytical understanding of the temporal decay of autocarrelation functions in 
this sector is still lacking. 

7. Spatial correlation function in the steady state 

Let C,,p(r) be the probability that, in the steady state, spins at two sites which F e  separated 
by a distance r are (I and @. We calculate this equal time spatial correlation function forthe 
null sector. Let us assume periodic boundary conditions. Let S be the string corresponding 
to a given configuration on this lattice with sites i and i + r occupied by (I and @. Let SI 
be the substring of length r - 1 formed by spins between (I and @ and Sz be the substring 
of length L - r 4- 1 formed by the remaining spins. The endpoints of the substring Sz 
are (I and @. Let IS(S1)  and IS(&) be the irreducible strings corresponding to SI and 
SZ. Since IS(S) ='@, IS(S2)  will be IS(&) reflected about one end. We may write 
I S ( S 2 )  s ls(s])-'. 
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Figure 6. The autocorrelation function C&(t) for the sector abcabc, . ._ The decay is stretched 
exponential of the form exp(-t-'p) which shown by the broken CUNC 

where the summation is over all the distinct irreducible strings of SI. D ( I S ,  r - 1) is the 
size of the sector labelled by I S  on a lattice of length r - 1 with free boundary conditions 
and D,,B(ZS-', L - r + 1) i s  the size of the sector labelled by IS-' on a lattice of  length^ 
L - r + 1 with boundary sites fixed at 01 and B. 

Though we can calculate exact expressions for each of the above quantities, we derive 
the asymptotic behaviour by'taking L -+ 03, r c< L.  The length of the irreducible string 
1 < r ,  therefore in this limit one can make the approximation Da.p(1S, L - r + 1) % 

D,,p(q5, L - r - I + 1). In the case of free boundary condition the size of a sector depends 
only on the length of the irreducible string (21). (22) and we may replace the sum over 
distinct irreducible strings by a sum over the lengths of the irreducible strings as follows: 

where N(1) is the number of distinct irreducible strings of length 1, which is given by 
3 x P .  For large L, Du.p(q5. L - r - 1 + I) - (2fi)L-r-'+' / ( L  - r - I + Hence in 
the summation over 1 only terms corresponding to small 1 will contribute. We can find the 
asymptotic r dependence by approximating the sum by only the 1 = 0 term. Then we have 

Ca,p(r) - W $ , r  - I)Du,p($, L - r + l)/D(q5, L).  (41) 

For large L this gives 

for large r ,  where f (or, p )  is a c,onstant independent of r but depends on or and B. From 
the symmetry between different colours, it follows that f(or, p )  = ~ k ( l  - 36,,p). 
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Figure 7. The decay of C:u(t) (0)in the sector where irreducible string is random. and in 
the null secfor (+). These decays are approximately given by [-'I4 (broken curve), and t-0,59 
(dotted curve). 

8. Numerical diagonalization of the stochastic matrix in the null sector 

As mentioned in section 6, the decay of autocomelation function in the null sector suggests 
that the dynamics in this sector belongs to a new universality class. The description of 
dynamics in terms of the random walk of the characters of the irreducible string is not 
possible in this sector. One way of studying this sector is to directly diagonalize the 
stochastic matrix for small sizes. However, tgis task is not very easy because the size of 
the matrix to be diagonalized grows very fast with the size of the lattice (- (2&)'/L3/'). 
One can make use of various symmetries of the model to block diagonalize the matrix first 
and hence reduce the size of the matrix to be diagonalized. By using translation, reflection 
and the recolouring symmetry described in section 4 we have been able to diagonalize the 
stochastic matrix for lattice sizes up to 20, in the fully symmetric subspace. The algorithm 
used here for diagonalizing the matrix using the various symmetries is similar to the one 
we have used for studying the trimer model [lo]. For details of the algorithm we refer the 
reader to this reference. 

In table 1, we have listed the size of the matrix (NR.T,c) obtained after using all the 
three symmetries and the value of the largest non-zero eigenvalue in the symmetric subspace 
in the null sector for lattice sizes L from 2 to 20. For comparison we also list the total 
size (N) of the null sector, and also the reduced matrix size ( N c )  if only the recolouring 
symmetry C is taken into account. We see that the additional recolouring symmetry gives 
a significant reduction in the size of the matrix to be diagonalized. 

The largest eigenvalue of the stochastic matrix is 0. The difference between the largest 
and the second largest eigenvalues gives the gap in the spectrum of the stochastic matrix. 
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L 
- 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

N 

3 
15 
87 

543 
3543 

23 823 
163719 

1143 999 
8099 51 1 

57 959 535 

N c  

1 
3 

12 
55 

27 1 
1399 
7470 

40931 
228918 

1301 778 

NR,T.C 

I 
~ 

2 
4 
IO 
26 
93 

338 
1474 
6801 

33 746 

ZL 

-10.00000 
-3.108548 
-1.629235 
-0.974 243 
-0.632500 
-0.438 272 
-0.318921 
-0.240934 
-0.187 477 

2.881701 
2.245691 
2.304369 
2.369330 
2.379 750 
2.380690 
2.380~807 
2.381 040 

We have computed this gap for lattice sizes from 2 to 20. By using the finite size scaling 
relation AL - .L-z, the dynamical exponent ZL for a lattice of size L is estimated from the 
relation 

z L = l o g ( ~ ) / l o g ( T )  L - 2  
AL-2 

(43) 

Estimates of Z L  for various values of L are shown in table 1. The convergent of Z L  seemed 
to be quite good, and the estimate of the extrapolated value of z corresponding to L = 00 is 
2.39 f 0.05. The error bar reflects our subjective estimate of the possible systematic errors 
in the extrapolation. This value is in good agreement with the value of z = 2.5 f: 0.15 for 
the trimer model in the null sector [IO], and is evidence that both these models are in the 
same universality class. 
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